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Abstract. In the thermodynamic limit, we present an exact calculation of the time dynamics of a central
spin coupling with its environment at finite temperatures. The interactions belong to the Heisenberg XY
type. The case of an environment with finite number of spins is also discussed. To get the reduced density
matrix, we use a novel operator technique which is mathematically simple and physically clear, and allows
us to treat systems and environments that could all be strongly coupled mutually and internally. The
expectation value of the central spin and the von Neumann entropy are obtained.

PACS. 75.10.Jm Quantized spin models – 03.65.Yz Decoherence; open systems; quantum statistical meth-
ods – 03.67.-a Quantum information

1 Introduction

One of the promising candidates for quantum computa-
tion is spin systems [1–4] due to their long decoherence
and relaxation time. Combined with nanostructure tech-
nology, they have the advantage of being scalable. Just as
other quantum systems, the spin systems are inevitably
influenced by their environment, especially the spin envi-
ronment. As a result, decoherence will cause the transition
of a system from pure quantum states to mixture classi-
cal ones. This is a big obstacle in the development of the
quantum computer. Therefore the dynamic behavior of a
single spin or several spins interacting with a spin bath has
attracted much attention in recent years [5–13]. A quan-
tum system exposed to environmental modes is described
by the reduced density matrix. However, in most cases it is
impossible to obtain an exact solution to the evolution of
the reduced density matrix with the environmental modes
traced over. Then different approximate methods are used.
Markovian-type approximations [14–17] are valid only for
relatively long times and fail to represent behavior of the
system for short time regime [18]. On the other hand, some
authors [18–20] develop short-time approximation to deal
with the problem. If we can construct a physically rel-
evant model which can be solved exactly, this will be a
quite important work. Using a novel operator technique,
we have studied the entanglement evolution of two cou-
pled spins in a quantum spin environment in the thermo-
dynamic limit at finite temperature [21]. In the present
paper, we consider a similar model. However, to provide a
complete picture of the dynamics, we study an observable
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like Sz
0 and extend the operator technique to deal with the

case of finite number environmental spins. Recently, using
numerical tools, the authors of references [5–8] studied the
dynamic behavior of a central spin system decoherenced
by a spin bath. They considered a general and realistic
model. However the influence of environmental tempera-
ture was not taken into consideration. Here our model just
involves the Heisenberg XY coupling which has extensive
applications for various quantum information processing
proposals [22–26]. Another benefit of this model is that we
can obtain exactly the time evolution of the expectation
value of central spin Sz

0 and the von Neumann entropy at
finite temperature. Also the special operator technique we
used is mathematically simple and physically clear, and al-
lows us to treat systems and environments that could be
strongly coupled mutually. Furthermore, the internal dy-
namics of the spin bath are taken into consideration. This
is the main difference between our model and that in refer-
ence [27] where the system-bath coupling is also XY type,
but the bath is assumed to be in an unpolarized infinite
temperature states.

The paper is organized as follows. Section 2 introduces
the model Hamiltonian. From the reduced density matrix,
the expectation value of Sz

0 and the von Neumann entropy
of the central spin are calculated. Conclusions are given
in Section 3.

2 Model and calculations

We consider a single central spin (system) coupling with
the bath spins via a Heisenberg XY interaction. The bath
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correlations are also XY type. Both the central spin and
the bath consist of spin- 1

2 atoms. HB is the Hamiltonian
of the bath, and HSB represents the interaction between
the central spin and the bath [27]

H = HSB +HB , (1)

where

HSB =
g0√
N

(
S+

0

N∑
i=1

S−
i + S−

0

N∑
i=1

S+
i

)
, (2)

HB =
g

N

N∑
i�=j

(
S+

i S
−
j + S−

i S
+
j

)
, (3)

here S+
0 and S−

0 are the spin-flip operators of the central
spin, respectively. S+

i and S−
i are the corresponding oper-

ators of the ith atom in the bath. N is the number of the
bath atoms which have direct interaction with the central
spin. g0 is the coupling constant between the central spin
and the bath, whereas g is that in the bath. Both con-
stants are rescaled as g0/

√
N and g/N [27–30]. Using the

collective angular momentum operators J± =
∑N

i=1 S
±
i ,

we rewrite the Hamiltonians as

HSB =
g0√
N

(
S+

0 J− + S−
0 J+

)
, (4)

HB =
g

N
(J+J− + J−J+) − g. (5)

After the Holstein-Primakoff transformation:

J+ =
√
Nb+

(
1 − b+b

N

)1/2

, J− =
√
N

(
1 − b+b

N

)1/2

b,

(6)

b+ and b being creation and annihilation bosonic operators
such that [b, b+] = 1, the Hamiltonians are written as

HSB = g0S
+
0

(
1 − b+b

2N

)
b + g0S

−
0 b

+

(
1 − b+b

2N

)
, (7)

HB = 2gb+b
(

1 − b+b

N

)
. (8)

We have made a 1
N -expansion which is valid if the number

of the atoms in excited states is much smaller than N [28].
In the following, we can obtain exactly the reduced density
matrix for the central spin by tracing over the bosonic
bath at finite temperature.

We assume the initial density matrix of the composed
system to be factorized, i.e., ρ(0) = |ψ〉〈ψ|⊗ρB. The initial
state of the system is

|ψ〉 = α|1〉 + β|0〉, (9)

|α|2 + |β|2 = 1. (10)

The density matrix of the bath satisfies the Boltzmann
distribution, that is ρB = e−HB/T /Z, where Z is the par-
tition function and the Boltzmann constant has been set

to one. At absolute zero temperature, no excitation will
exist. The bath is in a thoroughly polarized state with all
spin down. With the increase of temperature, the number
of spin up atoms increases. ρS(t) is the reduced density
matrix of the central spin system, it can be written as

ρS(t) = trB

{
e−iHt [|ψ〉〈ψ| ⊗ ρB] eiHt

}
, (11)

where trB denotes the partial trace taken over the Hilbert
space of the spin bath. Using a novel operator technique,
we can exactly determine the matrix ρS(t) which is a 2×2
matrix in the standard basis |0〉, |1〉. As an example, we
just calculate time evolution of the operator |1〉〈1|, i.e.,

E(t) = trB

{
e−iHt

[
|1〉〈1| ⊗ e−HB/T

]
eiHt

}
. (12)

It is demonstrated in Appendix.
From equations (9), (11), and results in Appendix, the

reduced density matrix can be written as

ρS(t) = trB

{
e−iHt [|ψ〉〈ψ| ⊗ ρB] eiHt

}
=

(
ρ11 ρ12

ρ21 ρ22

)
, (13)

where

ρ11 = |α|2 1
Z

M∑
n=0

A1A
∗
1e

−2gn(1− n
N )/T

+ |β|2 1
Z

M∑
n=1

C1C
∗
1ne

−2gn(1− n
N )/T , (14)

ρ12 = αβ∗e−i2gt 1
Z

M∑
n=0

A1D
∗
1e

−2gn(1− n
N )/T , (15)

ρ21 = α∗βei2gt 1
Z

M∑
n=0

D1A
∗
1e

−2gn(1− n
N )/T , (16)

ρ22 = |α|2 1
Z

M∑
n=0

B1B
∗
1(n+ 1)e−2gn(1− n

N )/T

+ |β|2 1
Z

M∑
n=0

D1D
∗
1e

−2gn(1− n
N )/T . (17)

As mentioned in Appendix, the operator n̂ has been re-
placed by its eigenvalue n.

Assuming an initial condition α = 1 and β = 0, we
obtain the expectation value of Sz

0

〈Sz
0 〉 = trS(Sz

0ρS)
= 〈1|Sz

0ρS |1〉 + 〈0|Sz
0ρS |0〉

=
1

2Z

M∑
n=0

[A1A
∗
1 −B1B

∗
1(n+ 1)] e−2gn(1− n

N )/T ,

(18)

where trS denotes the partial trace taken over the Hilbert
space of the central spin.
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Fig. 1. Time evolution of 〈Sz
0〉 for an initial system state |ψ〉 =

|1〉 for different temperatures. g = g0, T = 100g (dot dashed
curve), T = 10g (solid curve), and T = 10g, N = 280 (dashed
curve).

In Figure 1, we plot 〈Sz
0 〉 as a function of time for

different values of temperature T . Except the dot dash
curve which is for T = 10g and N = 280, all the results
below are in the thermodynamic limit. It shows that ini-
tially 〈Sz

0 〉 exhibits a coherent oscillatory decay. With the
increase of temperature, the decay rate increases. After a
turning point g0t ≈ 6, which is independent on the tem-
perature, the oscillatory amplitude increases. Then 〈Sz

0 〉
oscillates in certain low value regime at high temperature.
After the initial fast decay, the central system exhibits
long-time oscillation. This is quite an unexpected result.
It is a common sense that interaction of the system with
its environment leads to a decay of the system’s initial
pure state into a mixture of several states, i.e., non diag-
onal elements of the density matrix vanish, and diagonal
elements achieve their equilibrium values. This causes an
damping of quantum oscillations and increase of the sys-
tem’s entropy with time [5]. However our results are not
unique. Recently, the authors of references [5,6] studied
numerically the dynamic behavior of a two spin system
decoherenced by a spin bath. Without considering the in-
fluence of the environmental temperature, they used a gen-
eral and realistic model and found that the system shows
a special dynamic behavior, i.e., an initial fast decay of
〈Sz

1 〉 or 〈Sz
2 〉 is followed by revival oscillations. This new

phenomenon was explained in detail, where the crucial fac-
tor is whether the central system comprises even or odd
number of spin entities [5,6]. Here we consider a single
central spin coupling with a spin bath. All the interac-
tions belong to the XY type. At finite temperature, an
exact solution is given. We do not think the mechanism
of the revival oscillation in our paper is same as that in
references [5,6]. Due to the symmetry of our model, the
Hamiltonian after the Holstein-Primakoff transformation
and in the thermodynamic limit is equivalent to that of a
qubit interacting with a single-mode thermal bosonic field.

The effect of this single-mode environment on the dynam-
ics of the central qubit is extremely non-Markovian. The
quantum information flowing into the environment may
partially return to the central spin. This reflects onto, for
example, the revival behavior of the reduced density ma-
trix of the central spin. This is different from the usual
environment model which consists of many bosonic modes
and often causes the reduced dynamics of the system of
interest displaying an exponential decay in time behavior.
So the Markovian approximation usually used in quan-
tum optics master equation will not work in our model.
One may do perturbation theory for weak-coupling case,
but the single-mode environment in our model will not
remain in thermal equilibrium state as is usually assumed
for an environment with very large degrees of freedom
in the weak-coupling master equation approach. As our
model corresponds to an extremely non-Markovian case,
the dynamics of 〈Sz

0 〉 shows a two-step behavior. That
is, after an initially quicker decay of the amplitude, the
dynamics still shows a behavior of quantum oscillations
at long times. The general trend for temperature depen-
dent dynamics is that the larger the temperature is, the
quicker the initial decay is and the smaller the amplitude
of the long-time oscillations is. This can be explained as
follows. At high temperature, the environment appears to
be in very disorderly states. The central spin quickly loses
its message to the environment and only a little message
can return to it. At infinite high temperature, no message
will return to the central spin. Then the revival behavior
will disappear. This is the case of reference [27], where
the spin bath is assumed to be in an unpolarized infinite
temperature state. In practice, only finite number of spins
in the bath interact with the central spin. Therefore it is
necessary to investigate the working condition of the ther-
modynamic limit in our model. The good fitness between
solid curve and dashed curve in Figure 1 shows that it
is safe to use the thermodynamic limit if T < 10g and
N > 280.

The von Neumann entropy of the central spin is de-
fined as

P = −trB(ρS ln ρS). (19)

After diagonalising the reduced density matrix ρS , we ob-
tain the von Neumann entropy

P = −
2∑

k=1

pk ln pk, (20)

where pk are the eigenvalues of the reduced density matrix
ρS and can be expressed as

p1,2 =
ρ11 + ρ22 ±

√
(ρ11 − ρ22)2 + 4ρ12ρ21

2
. (21)

In Figure 2, we plot the von Neumann entropy P (t) of the
reduced system for different values of T . The initial state
of the system is

|ψ〉 =
√

2
2

|1〉 +
√

2
2

|0〉. (22)
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Fig. 2. Time evolution of entropy P (t) for an initial system

state |ψ〉 =
√

2
2
|1〉 +

√
2

2
|0〉 for different temperatures. g = g0,

T = 20g (solid curve), T = 2g (dashed curve), and T = 0.2g
(dot dashed curve).

At high temperature, our results agree with reference [27]
quite well, especially for the initial stage of evolution,
where the Von Neumann entropy increases quickly. How-
ever, some kinds of oscillations appear at long times. This
shows the Non-Markovian behavior of the central spin sys-
tem. That is the system exchanges entropy (quantum in-
formation) with the spin bath for a long time at finite
temperature, so that the entropy will not come close to
saturation. With the decrease of temperature, the increas-
ing rate of P (t) becomes smaller and P (t) oscillates in a
lower value regime. For T = 2g, we see a large amplitude
vibration which means that non-equilibrium properties of
the system become more obvious. At very low tempera-
ture, the system still exchange entropy with the spin bath
periodically. In such case, the bath is in a state with all
spin down. The initial state of the central spin contains
spin up component. The interaction is XY type, then the
central spin and the spin bath can still exchange entropy
at very low temperature. If the central spin is also in a
spin down state, no exchange will happen.

3 Conclusions

We study the exact dynamics of a central spin in the quan-
tum Heisenberg XY model in the thermodynamic limit.
The reduced dynamics of the central spin coupling with
its environment at finite temperature is obtained. From
the reduced dynamics matrix, we calculate the expecta-
tion value of the central spin Sz

0 . The results show that
it decreases quickly and oscillates in a low value regime
at high temperature. We also calculate the von Neumann
entropy of the system. At very low temperature, with the
initial pure state |ψ〉 =

√
2

2 |1〉 +
√

2
2 |0〉, the central spin

evolves far from the completely mixed state Pmax = ln 2.
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Appendix: Calculation of time evolution
of the operator |1〉〈1|
The total Hamiltonian H contains operators b, b+, S−

0 ,
and S+

0 . Here S−
0 and S+

0 change the system state from
|1〉 to |0〉, and vice versa. Since

e−iHt = 1 − iHt+
(iHt)2

2!
+ . . . , (A.1)

it is obvious that we can write

e−iHt|1〉|x〉 = γ|1〉|x′〉 + δ|0〉|x′′〉, (A.2)

where |x〉 is an arbitrary reference state on the bath and γ
and δ are two time dependent numbers. Defining A|x〉 =
γ|x′〉 and B|x〉 = δ|x′′〉, we have

e−iHt|1〉|x〉 = (A|1〉 +B|0〉)|x〉, (A.3)

where A and B are functions of operators b, b+, and time
t. Using the Schrödinger equation identity

i
d

dt

(
e−iHt|1〉|x〉) = H

(
e−iHt|1〉|x〉) , (A.4)

and equation (A.3), we obtain

d

dt
A = −i

[
g0

(
1 − b+b

2N

)
bB + 2gb+b

(
1 − b+b

N

)
A

]
,

(A.5)

d

dt
B = −i

[
g0b

+

(
1 − b+b

2N

)
A+ 2gb+b

(
1 − b+b

N

)
B

]
,

(A.6)

with initial conditions from equation (A.3) being A(0) = 1
and B(0) = 0. As A and B are functions of b+ and b,
they are operators and do not commute with each other.
Equations (A.5) and (A.6) are thus coupled differential
equations of non-commuting operator variables, which can
not be solved by using conventional methods for ordinary
number variables.

The crucial observation to solve the problem is that
the Hamiltonian, equations (7) and (8), is of an effective
Jaynes-Cumming type and it can be block-diagonalized in
the dressed state subspace of |i;n〉, with i+n = constant.
Here |i〉 represent the qubit states and |n〉 are the bosonic
field number states. As a result, we may rewrite equa-
tions (A.5) and (A.6) in such a subspace. By introducing
the following transformation

A = A1, (A.7)

B = b+B1, (A.8)
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equations (A.5) and (A.6) then become

d

dt
A1 = −i

[
g0(n̂+1)

(
1− n̂

2N

)
B1+2gn̂

(
1− n̂

N

)
A1

]
,

(A.9)
d

dt
B1 = −i

[
g0

(
1− n̂

2N

)
A1+2g(n̂+1)

(
1− n̂+ 1

N

)
B1

]
,

(A.10)

where n̂ = b+b. At this stage, we know that A1, B1 are
functions of n̂ and t, and commute with each other. We can
then treat equations (A.9) and (A.10) as coupled complex-
number differential equations and solve them in a usual
way. Considering initial condition

A1(0) = 1, (A.11)
B1(0) = 0, (A.12)

we obtain

A1 =
2g(n̂+ 1)

(
1 − n̂+1

N

)
+ λ1

2
√
g2

(
1 − 2n̂+1

N

)2
+ g2

0(n̂+ 1)
(
1 − n̂

2N

)2
eiλ1t

− 2g(n̂+ 1)
(
1 − n̂+1

N

)
+ λ2

2
√
g2

(
1 − 2n̂+1

N

)2
+ g2

0(n̂+ 1)
(
1 − n̂

2N

)2
eiλ2t,

(A.13)

B1 = − g0
(
1 − n̂

2N

)
2
√
g2

(
1 − 2n̂+1

N

)2
+ g2

0(n̂+ 1)
(
1 − n̂

2N

)2

× [
eiλ1t − eiλ2t

]
, (A.14)

where

λ1,2 = −g(2n̂+ 1) + g
2n̂2 + 2n̂+ 1

N

±
√
g2

(
1 − 2n̂+ 1

N

)2

+ g2
0(n̂+ 1)

(
1 − n̂

2N

)2

.

(A.15)

Then finally we have

E(t) = |1〉〈1| 1
Z

M∑
n=0

A1A
∗
1e

−2gn(1− n
N )/T

+ |0〉〈0| 1
Z

M∑
n=0

B1B
∗
1 (n+ 1)e−2gn(1− n

N )/T ,

(A.16)

where

Z =
M∑

n=0

e−2gn(1− n
N )/T . (A.17)

In equation (A.16), the trace over the environmental de-
grees of freedom has been performed and the operator n̂
has been replaced by its eigenvalue n. We have made a
1
N -expansion in equations (7) and (8), which is valid only

for n� N . Therefore we demand M � N for the integer
M in equation (A.16). Also equation (A.16) must converge
quickly for M � N , which is the case at low temperature
(T � g). In the thermodynamic limit (N → ∞), we can
set M → ∞ and discard the limitation of the low temper-
ature. In such case, the partition function

Z =
1

1 − e−2g/T
. (A.18)

Let
e−iHt|0〉|x〉 = (C|1〉 +D|0〉)|x〉. (A.19)

In the same way, we have

C = bC1e
i2gt, (A.20)

D = D1e
i2gt, (A.21)

where

C1 = − g0
(
1 − n̂−1

2N

)
2
√
g2

(
1 − 2n̂−1

N

)2
+ g2

0n̂
(
1 − n̂−1

2N

)2

×
[
eiλ′

1t − eiλ′
2t

]
, (A.22)

D1 =
2gn̂− 2g (n̂−1)2

N + λ′1

2
√
g2

(
1 − 2n̂−1

N

)2
+ g2

0n̂
(
1 − n̂−1

2N

)2
eiλ′

1t

− 2gn̂− 2g (n̂−1)2

N + λ′2

2
√
g2

(
1 − 2n̂−1

N

)2
+ g2

0n̂
(
1 − n̂−1

2N

)2
eiλ′

2t,

(A.23)

where

λ′1,2 = −g(2n̂+ 1) + g
2n̂2 − 2n̂+ 1

N

±
√
g2

(
1 − 2n̂− 1

N

)2

+ g2
0n̂

(
1 − n̂− 1

2N

)2

. (A.24)
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